Rust-ifyng Data Collections
for Compiler Optimization

CS Undergraduate Research Showcase 2024
October 17, 2024 (&)

Benjamin Ye

Slide content adapted from original MemOIR paper + slides by Tommy McMichen and Simone Campanoni

Compilers are really cool!

- They do a lot of magical things we take for

granted!

b
—>

Translation

Abstractions

* Variables
* Control flow

Lowering

* Languages (e.g. C++, Swift)
 Architectures (e.g. x86, ARM)

Optimization
Compute

* Speed

* Energy

Space

- Memory
* Storage

Compilers are really cool!

* Memory

Optimizing memory is hard
std:unordered map<int, int> &table;

table[0] = 10;

table[1] = 20; ?

print(table[@]);

No production C/C++
compiler can propagate 10
to the print statement.

Optimizing memory is hard

std:unordered _map<int, int> &table;

cablefo] = 10; W]
(a) no reallocation (b) reallocation
table[1] = 20; G N

realloc?(table, ...); - _

rehash?(table); /
print(table[0]); Which address?

Optimizing memory is hard

std:unordered map<

table[©@] = 5

table[1] = 5

table, ..
(table);

(table[@]);

J

>

&table;

The Undecidability of Aliasing

G. RAMALINGAM
IBM T. J. Watson Research Center

quires alias in
must have the
or L-valued
ng program
problem, one i
¢ n

m a £

11 paths

Programm

Problem

- Data collections are high-level abstractions of
memory.

- These abstractions are prematurely lowered before
optimizations occur.

Problem

How can we maintain information
about these abstractions at the
optimization level?

MemOIR

- Memory Object Intermediate Representation

- Intermediate compilation target designed for
memory optimization

- Separates memory use from memory structure
- Preserves higher-level information
- Allows us to explore new optimizations!

Representing Data Collections in an SSA Form

Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai, Atmn Patel, Simone Campanoni
Northwestern University
Evanston, IL, USA

Data collections

4 N\ [)

0

seoe| | EEE
Set

List

[] ‘®-0)
L OEIC
A,ayl @=0

_ Jou"™

Sequential Associative

Pragmatics: guarantees

- Strong memory guarantees required

var1=9;

Pragmatics: guarantees

- Strong memory guarantees required

+ Strong static types
/leed rigorously enforced type

nt1i=9;

Pragmatics: guarantees

- Strong memory guarantees required
+ Strong static types
+ Single reference

-
inti1=9;

Only one reference that modifies some data at any point

Pragmatics: C/C++

- A little clunky
- Strong static types? Yes
- Single reference? Manually

- Result: annoying for developers to use!

%’

reference

—

reference .

[E—

Perfectly ok!
(bad)

Pragmatics: Rust

- Ownership system
- Immutable vs mutable variables
- Immutable: any number of references
* Mutable: only one active reference

- Elides aliasing in variables
* MemOIR allows us to extend that to collections!

Mutap), Fefel"en

UtabJa refe Fence

immutable reference

mut i32

NERP referer\“o

1mmutable reference

| —

Pragmatics: Rust

- Checks both boxes
- Strong static types? Yes

- Single reference? Yes

- Borrow checker enforces ownership
- Alias checking moves from programmer to compiler

Fitting rust in
This 1s just Clang!\

Parsing, desugaring,
and type checking

Parsing, desugaring,,
and type checking
(no MemOIR)

Non-SSA MemOIR

SSA construction

MemOIR Optimization

SSA Destruction
and lowering

\This lowers to LLVM!

LLVM IR Optimization

Codegen

Machine code

Blue = LLVM/Clang
(simplified) Purple = MemOIR

Fitting rust in

Parsing, desugaring,
and type checking
Parsing, desugaring,
and type checking
(no MemOIR)

Non-SSA MemOIR
SSA construction

MemOIR . Optimization

SSA Destruction
and lowering

Optimization

LLVM IR '

Codegen

Machine code Blue = LLVM/Clang
Purple = MemOIR

(simplified)

Fitting rust in

Parsing, desugaring,
and type checking

Parsing and Desugaring l and type checking

(no MemOIR)

Non-SSA MemOIR

Type checking i SSA construction

C MemOIR "]

Borrow
Optimization checking

Optimization

SSA Destruction
and lowering

LLVM IR Optimization

Codegen

Machine code

(simplified)

Parsing, desugaring,,

Blue = LLVM/Clang
Purple = MemOIR

Green = Ben’s work

Implementation mechanics

- rust-memoir
- Library/language extension
- As close to a 1:1 mapping of Vec and HashMap as possible
- Generates MemOIR symbols
* Occasional extra type specification required

veclt[2, 3, 7, 9] seguu32t[i2, 3, 7, 9]
some_vec.iter() some_seq.iter()
HashMap: :new() Assoc: :<132, u64>::new()

some_map.insert(5) some_assoc.insert(5)

Implementation mechanics

- References
* Overloading operators 1s awkward

out = some_vec[@];
some_vec[@] = in;

\ £

let mut some_seq_© = SeqRef::<i32>::new(&some_seq, 0);
out = some_seq_0.get();
some_seq_0.set(in);

Implementation mechanics

Parsing, desugaring,
and type checking
Parsing, desugaring,
and type checking
(no MemOIR)

Non-SSA MemOIR
SSA construction

MemOIR . Optimization

SSA Destruction

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
. [
and lowering :

Optimization

LLVM IR '

Codegen

Machine code

Implementation mechanics

Parsing, desugaring,
and type checking
Parsing, desugaring,
and type checking
(no MemOIR)

Non-SSA MemOIR

SSA construction

\ MemOIR . Optimization

SSA Destruction
and lowering

Optimization

LLVM IR '

Codegen

Pointers as integers????

* Borrow checking was fine

Implementation mechanics

Parsing, desugaring,
and type checking
Parsing, desugaring,
and type checking
(no MemOIR)

Non-SSA MemOIR
SSA construction

MemOIR . Optimization

SSA Destruction
and lowering

Optimization

LLVM IR '
=

Machine code

* Rust std stored in .rlib
» Missing allocator bindings

Future work

- Get formal test runner/benchmarks working
- Extend frontend for structs/objects

- Misc. rust ergonomics

Thank you!

Representing Data Collection

\‘hvvﬂ‘

in an SSA Form

Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai, Atmn Patel, Simone Campanoni

North:

Evanston

Abstract—Compiler research and development has treated
computation as the primary driver of performance improvements
in C/C++ programs, leaving memory optimizations as a secondary
consi jon. Developers are currently handed the arduous task of
describing both the semantics and layout of their data in memory,

manually or via libraries, prematurely lowering high-level
data collections 0 a low-level view o for the compiles
Thus, the compiler can only glean conservative information about
the memory in a program, e.g., alias analysis, and is further
b ptimizations. Th
the Memory Object Intermediate Representa
language-agnostic SSA form for sequential and assoc
callections, objects, and the fields contained therein. At the core
of MEMOIR s a decoupling of the memory used to store data
logically organize data. Through its SSA form,
perform element-level analysis on data
c analysis on the state of a collect
or object at any given program point. To illustrate the power of
this analysis, we perform dead element elimination, resulting
2 2646% speedup on mc£ from SPECINT 2017, With the degree
of freedom to mutate memory layout, our MEMOTR compik
performs field elision and dead field elimination, reducing peak
memory usage of mct by 208
wonds—compilers, intermediate representation, optimiza

1. INTRODUCTION

Imperative pr
describe their programs via direct updates to the program
Some of these langua namely C, give developers

direct access 0 memory

mming languages require developers to

state
making the ceiling for manual
memory optimizations nearly unlimited. Using this degree of
freedom, developers have been able to build operatin
optimizing compilers, and interpreters
s with the caveat that
lly. This
spawned mostly out of necessity, as compilers of the time wer

" as a portable assembly
As such,
aturely optimize (1] memory,

wever this manual control com

all memory optimizations must be created manu
almost solely translation units, takin;
language and translating it to the target machine code.
developers were required 10 pren
before the compiler could perform meanin
For projects where performance is a primary goal, manual
memory optimiz. lent throughout the source code.
Anytime a developer wants 1o change a data structure, they must
consider the implications of that change on existing memory
A daunting task, as memory optimizations a

ful optimizations.

jions are prev

optimizations.
performed by careful consideration of both the data structure
definition and its multitude of allocations. However this leaves
compilers with lacking degrees of freedom, as these decisions
are fixed before compilar

As a result, production compiler optimizations ¢i

valu n their applicability when

her focus

on scalar s or are limited

979-8-3503-9509-9/24 © 2024 IEEE

estern L

versity

IL, USA

memory is involved. Modern compilers seek 1o perform more

ressive transformations, such as automatic vectorization
and parallelization [2-14], to fully utilize mode
Such tra

n. multi-core
processors sformations require precise information
a and control dependencies in the proy
ating on scalars, these dependencies can
alyzed with SSA forms [18,19]. However these
techniques are severely limited when dealing with applications
operating on complex data structures holding increasingly large
amounts of data that must be stored in memory
At present, only fixed-length arrays and objects have SSA
forms [20.21]. Compilers, therefore, must rely on pointer
analyses for data flow information about memaory objects
This information can be improved by field-sensitive (22] and
type-based [23] analyses, however common manual memory
ity that
the compiler cannot resolve. An example of this is allocation

optimizations create spurious dependencies and ambi

reuse, wherein a memory location is used 10 represent multiple
objects over the exccution of the program. This optimization is
common for vectors, which may use the same memory location
for different elements throughout its lifetime
the disjoint lifetimes of individual elements into a single
ived lifetime. Through such premature optimization

the compiler cannot distinguish between dependencies injected
by the developer and those logically necessary

The problems facin
of ambiguous memory behavior and lacking degrees of freedom
for depend
compiler requires unambiguous memory operations v

modern compilers are the culmination

ncy breaking transformations. To remedy this, the
strong
guarantees about the type, allocation

am. Memory behavior must be presented in a

nd usage of memory
within the prog
form that can be m ully analyzed and tre

This paper proposes the Memory Object Intermediate
Representation (MEMOIR). MEMOIR provides the compiler
with an SSA representation for sequ
Additionally it defines a representation for

ning sformed.

ntial and associative
data collections
objects and their fields. By decoupling the representation of
memory used to store data from the memory used to
logically organize data, MEMOIR grants powerful
for transformation and enables sparse data flow

antees
nalysis for
elements of collec a def-use chains.
MEMOIR also
change the memory layout of individual objects as well as the
broader memory structure of a program. By providing an 1R
that is amenable to both analysis and transformation, MEMOIR
compilers can emit performant code without placing the burden
of memory optimization on developers

ons and fields of objects
rants the degrees of freedom necessary 1o

https://golf0ned.github.io/
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf

	Slide 1: Rust-ifyng Data Collections for Compiler Optimization
	Slide 2: Compilers are really cool!
	Slide 3: Compilers are really cool!
	Slide 4: Optimizing memory is hard
	Slide 5: Optimizing memory is hard
	Slide 6: Optimizing memory is hard
	Slide 7: Problem
	Slide 8: Problem
	Slide 9: MemOIR
	Slide 10: Data collections
	Slide 11: Pragmatics: guarantees
	Slide 12: Pragmatics: guarantees
	Slide 13: Pragmatics: guarantees
	Slide 14: Pragmatics: C/C++
	Slide 15: Pragmatics: Rust
	Slide 16: Pragmatics: Rust
	Slide 17: Fitting rust in
	Slide 18: Fitting rust in
	Slide 19: Fitting rust in
	Slide 20: Implementation mechanics
	Slide 21: Implementation mechanics
	Slide 22: Implementation mechanics
	Slide 23: Implementation mechanics
	Slide 24: Implementation mechanics
	Slide 25: Future work
	Slide 26: Thank you!

