
Rust-ifyng Data Collections
for Compiler Optimization
CS Undergraduate Research Showcase 2024
October 17, 2024 ()

Benjamin Ye

Slide content adapted from original MemOIR paper + slides by Tommy McMichen and Simone Campanoni

Compilers are really cool!

Optimization
Compute

• Speed

• Energy

Space

• Memory

• Storage

Translation
Abstractions

• Variables

• Control flow

Lowering

• Languages (e.g. C++, Swift)

• Architectures (e.g. x86, ARM)

• They do a lot of magical things we take for
granted!

Compilers are really cool!

Optimization
Compute

• Speed

• Energy

Space

• Memory

• Storage

Translation
Abstractions

• Variables

• Control flow

Lowering

• Languages (e.g. C++, Swift)

• Architectures (e.g. x86, ARM)

• They do a lot of magical things we take for
granted!

Optimizing memory is hard

std:unordered_map<int, int> &table;

table[0] = 10;

table[1] = 20;

print(table[0]);

No production C/C++

compiler can propagate 10
to the print statement.

?

Optimizing memory is hard

std:unordered_map<int, int> &table;

table[0] = 10;

table[1] = 20;

print(table[0]);

realloc?(table, ...);
rehash?(table);

10 20

10

20 10

Which address?

(a) no reallocation (b) reallocation

Optimizing memory is hard

std:unordered_map<int, int> &table;

table[0] = 10;

table[1] = 20;

print(table[0]);

realloc?(table, ...);
rehash?(table);

Problem

• Data collections are high-level abstractions of
memory.

• These abstractions are prematurely lowered before
optimizations occur.

Problem

• Data collections are high-level abstractions of
memory.

• These abstractions are prematurely lowered before
optimizations occur.

How can we maintain information

about these abstractions at the

optimization level?

MemOIR

• Memory Object Intermediate Representation

• Intermediate compilation target designed for
memory optimization

• Separates memory use from memory structure

 Preserves higher-level information

 Allows us to explore new optimizations!

Data collections

Sequential Associative

List

Array

Set

Map

Pragmatics: guarantees

• Strong memory guarantees required

i = 9;var

Pragmatics: guarantees

 Strong static types

• Strong memory guarantees required

i = 9;int

Fixed, rigorously enforced type

 Single reference

Pragmatics: guarantees

 Strong static types

• Strong memory guarantees required

Only one reference that modifies some data at any point

i = 9;int

&i

&i

Pragmatics: C/C++

• A little clunky

 Strong static types? Yes

 Single reference? Manually

• Result: annoying for developers to use!

int foo
reference

Perfectly ok!

(bad)

Pragmatics: Rust

• Ownership system

 Immutable vs mutable variables

 Immutable: any number of references

 Mutable: only one active reference

 Elides aliasing in variables

 MemOIR allows us to extend that to collections!

i32 foo
immutable reference

mut i32 bar

Pragmatics: Rust

• Checks both boxes

 Strong static types? Yes

 Single reference? Yes

• Borrow checker enforces ownership

 Alias checking moves from programmer to compiler

Fitting rust in

Blue = LLVM/Clang

Purple = MemOIR(simplified)

This is just Clang!

This lowers to LLVM!

Fitting rust in

Blue = LLVM/Clang

Purple = MemOIR
Orange = Rust(simplified)

Fitting rust in

Blue = LLVM/Clang

Purple = MemOIR

Green = Ben’s work(simplified)

Orange = Rust

Implementation mechanics

• rust-memoir

 Library/language extension

 As close to a 1:1 mapping of Vec and HashMap as possible

 Generates MemOIR symbols

 Occasional extra type specification required

vec![2, 3, 7, 9]
some_vec.iter()
HashMap::new()
some_map.insert(5)

seq_u32![2, 3, 7, 9]
some_seq.iter()
Assoc::<i32, u64>::new()
some_assoc.insert(5)

Implementation mechanics

• References

 Overloading operators is awkward

out = some_vec[0];
some_vec[0] = in;

let mut some_seq_0 = SeqRef::<i32>::new(&some_seq, 0);
out = some_seq_0.get();
some_seq_0.set(in);

Implementation mechanics

Implementation mechanics

• Borrow checking was fine

• Pointers as integers????

Implementation mechanics

• Rust std stored in .rlib

• Missing allocator bindings

Future work

• Get formal test runner/benchmarks working

• Extend frontend for structs/objects

• Misc. rust ergonomics

Thank you!

https://golf0ned.github.io/

https://mcmichen.cc/files/

MEMOIR_CGO_2024.pdf

https://golf0ned.github.io/
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf

	Slide 1: Rust-ifyng Data Collections for Compiler Optimization
	Slide 2: Compilers are really cool!
	Slide 3: Compilers are really cool!
	Slide 4: Optimizing memory is hard
	Slide 5: Optimizing memory is hard
	Slide 6: Optimizing memory is hard
	Slide 7: Problem
	Slide 8: Problem
	Slide 9: MemOIR
	Slide 10: Data collections
	Slide 11: Pragmatics: guarantees
	Slide 12: Pragmatics: guarantees
	Slide 13: Pragmatics: guarantees
	Slide 14: Pragmatics: C/C++
	Slide 15: Pragmatics: Rust
	Slide 16: Pragmatics: Rust
	Slide 17: Fitting rust in
	Slide 18: Fitting rust in
	Slide 19: Fitting rust in
	Slide 20: Implementation mechanics
	Slide 21: Implementation mechanics
	Slide 22: Implementation mechanics
	Slide 23: Implementation mechanics
	Slide 24: Implementation mechanics
	Slide 25: Future work
	Slide 26: Thank you!

